
Test Report

Test Report Version 1.0 Produced 1 November 2023
 Page 1

Assessor Instructions: This template adheres to the expectations by outlining the code's

variables testing, executing two basic test cases, evaluating control structures, and assessing

how well the code meets the task objectives. For actual testing, more detailed and dynamic

analysis would be conducted within an IDE environment, using debugging tools to trace variable

values and execution flow and to identify runtime errors or logical issues.

For the task at hand, considering the application's scope and the need for effective debugging

and testing tools, Visual Studio Code would be an excellent choice. Visual Studio Code, with its

lightweight nature and extensive plugin system, would be particularly useful for a wide range of

development tasks, including web and mobile app development, which is relevant for the

Bounce Fitness Connect application. Visual Studio Code has been discussed and demonstrated

in the learning.

The provided code snippet from the Application Code – Assessor Guide, effectively

demonstrates the basic logic required for the Bounce Fitness Connect application, focusing on

user authentication and class scheduling/booking functionalities and has no errors. So, this

template has been developed based on the test cases for the code provided, and it is error-free.

When testing a Python application like the one developed for Bounce Fitness Connect, which

involves user authentication and class scheduling/booking functionalities, several common

hypothetical errors could be identified:

1. Syntax Errors: These are mistakes in the code's syntax, like missing colons, incorrect

indentation, or typos in function names or keywords. They usually prevent the code from

executing.

2. Runtime Errors: These occur during the execution of the program, such as trying to

access an undefined variable, performing an operation on incompatible types, or

accessing out-of-bound indices in a list.

3. Logic Errors: These are mistakes in the program's logic that lead to incorrect behaviour,

like incorrect comparisons in if statements, wrong conditions in loops, or errors in the

business logic that handles user authentication and class booking.

4. Authentication Failures: Issues in the user login process, such as incorrect handling of

user credentials, failing to check for user existence, or improperly managing session

states, can lead to authentication errors.

5. Database Interaction Issues: Since the application interacts with a database to fetch

class schedules and handle user data, common errors include incorrect database

queries, failure to handle database connection issues, or improper data handling,

leading to inconsistent states.

6. Concurrency Problems: In a real-world scenario, handling multiple users booking

classes simultaneously could lead to concurrency issues, such as race conditions,

where two users manage to book the last spot in a class due to insufficient

synchronisation.

7. Input Validation Errors: Failing to properly validate user input can lead to various issues,

including security vulnerabilities like SQL injection or logical errors like booking a class

for a date in the past.

Test Report

8. Error Handling Issues: Insufficient or incorrect error handling can lead to unhelpful error

messages for the user, or worse, crashes and unhandled exceptions that terminate the

program unexpectedly.

9. Performance Bottlenecks: Inefficient algorithms or unoptimised database queries can

lead to performance issues, especially under load, which might not be evident during

initial testing but can become significant problems as usage grows.

10. Integration Issues: When different parts of the application (like the user interface and the

backend server) or external services (like payment processors or email services) are

integrated, mismatches in expected data formats, communication protocols, or

endpoint URLs can lead to failures.

These hypothetical errors are commonly encountered during the development and testing

phases and can usually be identified and resolved through a combination of static code

analysis, unit testing, integration testing, and end-to-end system testing.

Test Report Version 1.0 Produced 1 November 2023
© Precision RTO Resources Page 3

TEST REPORT

Student Name

Workplace/Organisation

Bounce Fitness

Date Prepared

State/Territory

VARIABLES TESTING

Errors

List each error identified

in the variables of the

code.

Line Number

The line number

where each

error appears

in.

Description

A brief description

of each error

identified. This can

include information

on what the

problem with the

variable is and its

impact on the code

or application.

[Approximate word

count: 20 – 30

words]

Changes Made

All changes made to

address each error

identified.

a.

None observed

N/A

No explicit errors in

the static code

review

No changes required

b.

c.

Add more rows as necessary

Test Report

Test Case 1

Test Case

Describe the scenario for

the test case.

This can include

information on how the

test case is relevant to the

objectives of the

application as indicated in

the design document

[Approximate word count:

50 – 100 words]

Use Authentication

The objective is to verify that the user authentication process

works as intended.

Ensuring that only authenticated users can access their

schedules and book classes is crucial for member engagement

and security.

The process will be to attempt to log in with both valid and

invalid credentials. The system should only grant access when

the credentials are correct, aligning with the security and user

management objectives.

Outcome of Test Case

[Approximate word count:

10 – 20 words]

Expected to print "Login successful." and return True.

Errors or Issues Changes Made

a.

None observed

No changes required

b.

c.

Add more rows as necessary

Test Report Version 1.0 Produced 1 November 2023
© Precision RTO Resources Page 5

Test Case 2

Test Case

Describe the scenario for

the test case.

This can include

information on how the

test case is relevant to the

objectives of the

application as indicated in

the design document

[Approximate word count:

50 – 100 words]

Class Scheduling and Booking

The objective is to test the functionality of class scheduling and

booking, ensuring members can view and book available fitness

classes easily.

This directly relates to the core objective of enhancing member

engagement by providing an intuitive and accessible way for

members to manage their fitness routines.

After successful authentication, the member tries to book a

yoga class. The system should show available classes, allow

the member to select a class, and successfully book it if space

is available. This process tests the application’s ability to

manage class schedules and bookings effectively.

Outcome of Test Case

Expected to print available classes and "Successfully booked

Yoga."

Errors or Issues Changes Made

a.

None observed

No changes required

b.

c.

Add more rows as necessary

Test Report

Code Evaluation

This must include the following:

▪ What control structures were used in the code

▪ Explanation of how well the code and application meets all task objectives identified

[Approximate word count: 50 – 100 words]

Control Structures Used in the Code:

• Sequence constructs: Linear execution of instructions.

• Selection constructs: if statements for decision making in authentication and

booking.

• Iteration constructs: for loop to iterate through the class schedule.

Evaluation of Code Meeting Task Objectives:

• The code provides a basic implementation of the specified functionalities:

user authentication and class scheduling/booking.

• User authentication is simulated with a placeholder function that always

returns True, indicating successful login.

• Class scheduling and booking are demonstrated with a static list of classes

and a simulated booking function.

END OF TEST LOGS AND REPORTS

